Ookinete destruction within the mosquito midgut lumen explains Anopheles albimanus refractoriness to Plasmodium falciparum (3D7A) oocyst infection

نویسندگان

  • Luke A. Baton
  • Lisa C. Ranford-Cartwright
چکیده

Previous studies have shown that the central American mosquito vector, Anopheles albimanus, is generally refractory to oocyst infection with allopatric isolates of the human malaria parasite Plasmodium falciparum. However, the reasons for the refractoriness of A. albimanus to infection with such isolates of P. falciparum are unknown. In the current study, we investigated the infectivity of the P. falciparum clone 3D7A to laboratory-reared A. albimanus and another natural vector of human malaria, Anopheles stephensi. Plasmodium falciparum gametocytes grown in vitro were simultaneously fed to both mosquito species and the progress of malaria infection compared. In 22 independent paired experimental feeds, no mature oocysts were observed on the midguts of A. albimanus 10days after bloodfeeding. In contrast, high levels of oocyst infection were found on the midguts of simultaneously fed A. stephensi. Direct immunofluorescence microscopy and light microscopical examination of Giemsa-stained histological sections were used to identify when the P. falciparum clone 3D7A failed to establish mature oocyst infections in A. albimanus. Similar densities of macrogametes/zygotes, and immature retort-form and mature ookinetes were found within the bloodmeals of both mosquito species. However, in A. albimanus, ookinetes were seldom associated with the peritrophic matrix, and were neither observed in the ectoperitrophic space nor the midgut epithelium. In contrast, ookinetes were frequently observed in these midgut compartments in A. stephensi. Additionally, young oocysts were observed on the midguts of A. stephensi but not A. albimanus 2days after bloodfeeding. Vital staining of the immature retort-form and mature ookinetes found within the luminal bloodmeal, demonstrated that a significantly greater proportion of these malaria parasite stages were non-viable in A. albimanus compared with A. stephensi. Overall, our observations indicate that ookinetes of the P. falciparum clone 3D7A are destroyed within the bloodmeal of A. albimanus and that the midgut lumen, rather than the midgut epithelium, is the site of mosquito refractoriness in this particular malaria parasite-mosquito vector combination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut.

Ookinete invasion of the mosquito midgut is an essential step for the development of the malaria parasite in the mosquito. Invasion involves recognition between a presumed mosquito midgut receptor and an ookinete ligand. Here, we show that enolase lines the ookinete surface. An antienolase antibody inhibits oocyst development of both Plasmodium berghei and Plasmodium falciparum, suggesting that...

متن کامل

Immune Regulation of Plasmodium Is Anopheles Species Specific and Infection Intensity Dependent

Malaria parasite ookinetes must traverse the vector mosquito midgut epithelium to transform into sporozoite-producing oocysts. The Anopheles innate immune system is a key regulator of this process, thereby determining vector competence and disease transmission. The role of Anopheles innate immunity factors as agonists or antagonists of malaria parasite infection has been previously determined u...

متن کامل

Plasmodium berghei PIMMS2 Promotes Ookinete Invasion of the Anopheles gambiae Mosquito Midgut

Mosquito midgut stages of the malaria parasite present an attractive biological system to study host-parasite interactions and develop interventions to block disease transmission. Mosquito infection ensues upon oocyst development that follows ookinete invasion and traversal of the mosquito midgut epithelium. Here, we report the characterization of PIMMS2 (Plasmodium Invasion of Mosquito Midgut ...

متن کامل

Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae.

Plasmodium parasites must complete development in the mosquito vector for transmission to occur. The mosquito innate immune response is remarkably efficient in limiting parasite numbers. Previous work has identified a LPS-induced TNFα transcription factor (LITAF)-like transcription factor, LITAF-like 3 (LL3), which significantly influences parasite numbers. Here, we demonstrate that LL3 does no...

متن کامل

Characterization of Plasmodium developmental transcriptomes in Anopheles gambiae midgut reveals novel regulators of malaria transmission

The passage through the mosquito is a major bottleneck for malaria parasite populations and a target of interventions aiming to block disease transmission. Here, we used DNA microarrays to profile the developmental transcriptomes of the rodent malaria parasite Plasmodium berghei in vivo, in the midgut of Anopheles gambiae mosquitoes, from parasite stages in the midgut blood bolus to sporulating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2012